Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
TechTrends ; 66(1): 17-28, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34806091

RESUMO

Research on how university faculty design courses has been limited and marked by modest detail on faculty design processes. Addressing this gap, seven faculty members supported by an educational developer at a teaching-intensive university used collaborative autoethnography (CAE) to explain how university faculty engage in reflective, iterative approaches to learning design. Collaborative analysis and interpretation of systematically collected data drawn from individual experiences in learning design reveal how faculty use reflection as a tool in learning design to recognize problems, devise solutions and constructively process emotions. Through reflection, faculty identify design solutions that are responsive to circumstances during course delivery, capture reasoning that informs design solutions for future course iterations and accurately gauge the appropriate timing of design changes based on factors such as scale and feasibility. This article offers detailed ethnographic evidence and new findings that enrich our understanding of claims made in previous interview-based studies of faculty design.

2.
Syst Biol ; 65(4): 561-82, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27009895

RESUMO

Classifications and phylogenies of perceived natural entities change in the light of new evidence. Taxonomic changes, translated into Code-compliant names, frequently lead to name:meaning dissociations across succeeding treatments. Classification standards such as the Mammal Species of the World (MSW) may experience significant levels of taxonomic change from one edition to the next, with potential costs to long-term, large-scale information integration. This circumstance challenges the biodiversity and phylogenetic data communities to express taxonomic congruence and incongruence in ways that both humans and machines can process, that is, to logically represent taxonomic alignments across multiple classifications. We demonstrate that such alignments are feasible for two classifications of primates corresponding to the second and third MSW editions. Our approach has three main components: (i) use of taxonomic concept labels, that is name sec. author (where sec. means according to), to assemble each concept hierarchy separately via parent/child relationships; (ii) articulation of select concepts across the two hierarchies with user-provided Region Connection Calculus (RCC-5) relationships; and (iii) the use of an Answer Set Programming toolkit to infer and visualize logically consistent alignments of these input constraints. Our use case entails the Primates sec. Groves (1993; MSW2-317 taxonomic concepts; 233 at the species level) and Primates sec. Groves (2005; MSW3-483 taxonomic concepts; 376 at the species level). Using 402 RCC-5 input articulations, the reasoning process yields a single, consistent alignment and 153,111 Maximally Informative Relations that constitute a comprehensive meaning resolution map for every concept pair in the Primates sec. MSW2/MSW3. The complete alignment, and various partitions thereof, facilitate quantitative analyses of name:meaning dissociation, revealing that nearly one in three taxonomic names are not reliable across treatments-in the sense of the same name identifying congruent taxonomic meanings. The RCC-5 alignment approach is potentially widely applicable in systematics and can achieve scalable, precise resolution of semantically evolving name usages in synthetic, next-generation biodiversity, and phylogeny data platforms.


Assuntos
Classificação/métodos , Filogenia , Primatas/classificação , Animais , Biodiversidade
3.
PLoS One ; 10(2): e0118247, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25700173

RESUMO

Classifications and phylogenetic inferences of organismal groups change in light of new insights. Over time these changes can result in an imperfect tracking of taxonomic perspectives through the re-/use of Code-compliant or informal names. To mitigate these limitations, we introduce a novel approach for aligning taxonomies through the interaction of human experts and logic reasoners. We explore the performance of this approach with the Perelleschus use case of Franz & Cardona-Duque (2013). The use case includes six taxonomies published from 1936 to 2013, 54 taxonomic concepts (i.e., circumscriptions of names individuated according to their respective source publications), and 75 expert-asserted Region Connection Calculus articulations (e.g., congruence, proper inclusion, overlap, or exclusion). An Open Source reasoning toolkit is used to analyze 13 paired Perelleschus taxonomy alignments under heterogeneous constraints and interpretations. The reasoning workflow optimizes the logical consistency and expressiveness of the input and infers the set of maximally informative relations among the entailed taxonomic concepts. The latter are then used to produce merge visualizations that represent all congruent and non-congruent taxonomic elements among the aligned input trees. In this small use case with 6-53 input concepts per alignment, the information gained through the reasoning process is on average one order of magnitude greater than in the input. The approach offers scalable solutions for tracking provenance among succeeding taxonomic perspectives that may have differential biases in naming conventions, phylogenetic resolution, ingroup and outgroup sampling, or ostensive (member-referencing) versus intensional (property-referencing) concepts and articulations.


Assuntos
Algoritmos , Classificação/métodos , Filogenia , Gorgulhos/classificação , Animais , Alinhamento de Sequência/métodos
4.
PLoS One ; 9(3): e89606, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24595056

RESUMO

The study of biodiversity spans many disciplines and includes data pertaining to species distributions and abundances, genetic sequences, trait measurements, and ecological niches, complemented by information on collection and measurement protocols. A review of the current landscape of metadata standards and ontologies in biodiversity science suggests that existing standards such as the Darwin Core terminology are inadequate for describing biodiversity data in a semantically meaningful and computationally useful way. Existing ontologies, such as the Gene Ontology and others in the Open Biological and Biomedical Ontologies (OBO) Foundry library, provide a semantic structure but lack many of the necessary terms to describe biodiversity data in all its dimensions. In this paper, we describe the motivation for and ongoing development of a new Biological Collections Ontology, the Environment Ontology, and the Population and Community Ontology. These ontologies share the aim of improving data aggregation and integration across the biodiversity domain and can be used to describe physical samples and sampling processes (for example, collection, extraction, and preservation techniques), as well as biodiversity observations that involve no physical sampling. Together they encompass studies of: 1) individual organisms, including voucher specimens from ecological studies and museum specimens, 2) bulk or environmental samples (e.g., gut contents, soil, water) that include DNA, other molecules, and potentially many organisms, especially microbes, and 3) survey-based ecological observations. We discuss how these ontologies can be applied to biodiversity use cases that span genetic, organismal, and ecosystem levels of organization. We argue that if adopted as a standard and rigorously applied and enriched by the biodiversity community, these ontologies would significantly reduce barriers to data discovery, integration, and exchange among biodiversity resources and researchers.


Assuntos
Biodiversidade , Conhecimento , Semântica
5.
Trends Ecol Evol ; 23(3): 159-68, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18289717

RESUMO

Ecology is inherently cross-disciplinary, drawing together many types of information to address questions about the natural world. Finding and integrating relevant data to assist in these analyses is crucial, but is difficult owing to ambiguous terminology and the lack of sufficient information about datasets. Ontologies provide a formal mechanism for defining terms and their relationships, and can improve the location, interpretation and integration of data based on its inherent meaning. Ontologies have assisted other disciplines (e.g. molecular biology) in unifying and enriching descriptions of data, and ecology can benefit from similar approaches. We review ontology efforts in ecology, and describe how these can benefit research by enhancing the location and interpretation of relevant data for confronting crucial ecological questions.


Assuntos
Ecologia , Pesquisa , Terminologia como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...